1. Elric Zhang, Max Shotbolt, Chen-Yu Chang, Aidan Scott-Vandeusen, Shawnus Chen, Ping Liang, Daniela Radu, Sakhrat Khizroev,
    Controlling action potentials with magnetoelectric nanoparticles, Brain Stimulation, Volume 17,  Issue 5,2024, Pages 1005-1017,ISSN 1935-861X, https://doi.org/10.1016/j.brs.2024.08.008.
  2. “Novel Gas Sensing Approach: ReS2/Ti3C2Tx Heterostructures for NH3 Detection in Humid Environments” Sahil Gasso, Jake Carrier, Daniela Radu, and Cheng-Yu Lai. ACS Sensors Article ASAP. DOI: 10.1021/acssensors.4c01216
  3.  Mohammadi, S.; Kaur, N.; Radu, D.R. Nanoscale Cu2ZnSnSxSe(4−x) (CZTS/Se) for Sustainable Solutions in Renewable Energy, Sensing, and Nanomedicine. Crystals 202414, 479. https://doi.org/10.3390/cryst14050479
  4. “Enhancing Efficiency in Dye-Sensitized Solar Cells: Incorporation of Cu3VSe4 Nanocrystals into TiO2 Photoanodes” Navdeep Kaur, Linisha Biswal, Alexander Prieto, Cheng-Yu Lai, and Daniela R. Radu. ACS Applied Energy Materials 2024 7 (11), 5038-5049DOI: 10.1021/acsaem.4c00911
  5. Jake Carrier, Cheng-Yu Lai, Daniela Radu,” Lignin-Based Platform as a Potential Low-Cost Sorbent for the Direct Air Capture of CO2, ACS Environ. Au 2024, ASAP. https://doi.org/10.1021/acsenvironau.4c00008
  6. CY Chang, N Kaur, R Prado-Rivera, CY Lai, D Radu, “Size-Controlled Cu3VSe4 Nanocrystals as Cathode Material in Platinum-Free Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces 2024, 16, 11, 13719–13728. https://doi.org/10.1021/acsami.3c18658
  7. F Zhang, H Na, J Carrier, CY Chang, D Radu, CY Lai, “Lignin-Based Nanospheres as Environmental Remediation Platforms for Anionic Dye Contaminants”, ACS Omega 2024, 9, 10, 12006–12014.https://doi.org/10.1021/acsomega.3c09834
  8. J Fina, N Kaur, CY Chang, CY Lai, DR Radu,”Enhancing light harvesting in dye-sensitized solar cells through mesoporous silica nanoparticle-mediated diffuse scattering back reflectors”, Electronic Materials 4 (3), 124-135, https://doi.org/10.3390/electronicmat4030010
  9. SK Swami, N Kumar, DR Radu, SW Cho, J Lee, “Lithium Incorporation into TiO2 Photoanode for Performance Enhancement of Dye-Sensitized Solar Cells”,ACS Applied Energy Materials 6 (16), 8599-8606,https://doi.org/10.1021/acsaem.3c01579
  10. N. Kaur., Oyon S.A., C.-Y. Lai, D. R. Radu, “From reflection to absorption: Improving light harvesting of dye sensitized solar cells with Cu nanowires as reflectors ” Optical Materials, 2023, 142,114074.
  11. Venedicto. M.; Carrier J., Ha Na., Chang. C.Y., Radu, D.R., Lai,C.-Y., “ Disulfide-Modified Mesoporous Silica Nanoparticles for Biomedical Applications ”, Crystals 2023, 13(7), 1067. https://doi.org/10.3390/cryst13071067
  12. Prado-Rivera, R; Lai,C.-Y.; Haqqani Mohammed, M.A.; Chang, C.-Y.; Syed,F; Radu, D. R., “Facile Synthesis and Single-Switch Antenna Application of Germanium-Doped Vanadium Dioxide”, ACS Appl. Electron. Mater. 2023 5 (6), 3480-3488. https://doi.org/10.1021/acsaelm.3c00498
  13. N. Kaur, F. M. Syed, J. Fina, C. -Y. Lai and D. R. Radu, “Ag Reflectors: An Effective Approach to Improve Light Harvesting in Dye Sensitized Solar Cells,” IEEE Journal of Photovoltaics, 2023, 3, 2, 250-253. https://doi.org/10.1109/JPHOTOV.2023.3238796
  14. Gonzalez-Moya, J.R.; Chang, C.Y.; Radu, D.R.; Lai, C.Y. Photocatalytic Deposition of Nanostructured CsPbBr3 Perovskite Quantum Dot Films on Mesoporous TiO2 and Their Enhanced Visible-Light Photodegradation Properties. ACS Omega 2022, 7, 30, 26738–26748. https://doi.org/10.1021/acsomega.2c03089
  15. Chang, C.Y.; Prado-Rivera, R.; Liu, M.; Lai, C.Y.; Radu, D.R. Colloidal Synthesis and Photocatalytic Properties of Cu3NbS4 and Cu3NbSe4 Sulvanite Nanocrystals. ACS Nanoscience Au 2022https://doi.org/10.1021/acsnanoscienceau.2c00021
  16. Attar, G.S.; Liu, M.; Lai, C.-Y.; Radu, D.R. Green Synthesis of Ge1-xSnx Alloy Nanoparticles for Optoelectronic Applications. Crystals 202111, 1216. https://doi.org/10.3390/cryst11101216
  17. Liu, M.; Bhandari, A.; Haqqani Mohammed, M.A.; Radu, D.R.; Lai, C.-Y. Versatile Silver Nanoparticles-Based SERS Substrate with High Sensitivity and Stability. Appl. Nano 20212, 242-256. https://doi.org/10.3390/applnano2030017
  18. Liu, M.; Radu, D.R.; Selopal, G.S.; Bachu, S.; Lai, C.-Y. Stand-Alone CuFeSe2 (Eskebornite) Nanosheets for Photothermal Cancer Therapy. Nanomaterials 202111, 2008. https://doi.org/10.3390/nano11082008
  19. Prado-Rivera, R.; Chang, C.-Y.; Liu, M.; Lai, C.-Y.; Radu, D.R. Sulvanites: The Promise at the Nanoscale. Nanomaterials 2021, 11, 823. https://doi.org/10.3390/nano11030823
  20. Liu, M.; Lai, C.-Y.; Chang, C.-Y.; Radu, D.R. Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals. Crystals 2021, 11, 51. https://doi.org/10.3390/cryst11010051
  21. Liu, M., Lai, CY., Zhang, M., Radu, D. Cascade synthesis and optoelectronic applications of intermediate bandgap Cu3VSe4 nanosheets. Sci Rep 10, 21679 (2020). https://doi.org/10.1038/s41598-020-78649-9
  22. “Synthesis and optoelectronic properties of Cu3VSe4 nanocrystals”, Liu M, Lai CY, Selopal GS, Radu DR, PLOS ONE 15(5): e0232184 (2020). https://doi.org/10.1371/journal.pone.0232184
  23. “Synthesis of highly efficient Cu2ZnSnSxSe4−x (CZTSSe) nanosheet electrocatalyst for dye-sensitized solar cells”, Mohammadnezhad, M. ; Liu, M.; Selopal, G.S.; Pardo, F.N.; Wang, Z.M.; Stansfield, B.; Zhao, H.; Lai, C.; Radu, D.; Rosei, F. Electrochim. Acta, p. 135954, Feb. 2020https://doi.org/10.1016/j.electacta.2020.135954
  24. “Sulvanite” (Cu3VS4) Nanocrystals for Printable Thin Film Photovoltaics”, Chen, C.-C.; Stone, K. H.; Lai, C.-Y.; Dobson, K. D.; Radu, D. Materials Letters Materials Letters 2018, 211, 179-182. https://doi.org/10.1016/j.matlet.2017.09.063
  25. “The Promise of Solution Processed Fe2GeS4 Thin Films in Iron Chalcogenide Photovoltaics “ Liu, M.; Berg, D.; Hwang, P.-Y.; Lai, C.-Y.; Babbe, F.; Dobson, K.; Radu, D. Journal of Materials Science 2018, 53, 7725-7734. https://doi.org/10.1007/s10853-018-2082-1
  26. “A rapid molecular precursor solid-state route to crystalline Fe2GeS4 nanoparticles”, Hwang, P.-Y.; Berg, D.; Liu, M.; Lai, C.-Y.; Radu, D.R.  Materials Letters 2018, 223, 128-132. https://doi.org/10.1016/j.matlet.2018.04.020
  27. “Absorption and scattering cross-section extinction values of silver nanoparticles”, Hlaing, M.; Gebear-Eigzabher, B.; Roa, A.; Marcano, A.; Radu, D.R.; Lai, C.-Y. Optical Materials 2016, 58, 439-444. https://doi.org/10.1016/j.optmat.2016.06.013
  28. “Functionalized stellate macroporous silica nanospheres for CO2 mitigation”, Radu, D. R.; Pizzi, N. A.; Lai, C.-Y. Journal of Materials Science 2016, 51, 10632–10640. https://doi.org/10.1007/s10853-016-0284-y
  29. “Chalcogenide Nanoparticles Precursor in Thin-Film Photovoltaics—Processing Limitations”, Daniela R. Radu, Dominik Berg, Mimi Liu, Kevin Dobson, Po-Yu Hwang and Cheng-Yu Lai, 43rd IEEE Photovoltaics Specialists Conference Proceedings, 2016 https://doi.org/10.1109/PVSC.2016.7749617
  30. “Enzyme Immobilization on Mesoporous Silica Supports”, Lai, Cheng-Yu; Radu, Daniela R.; Heterogeneous Catalysts for Today’s Challenges, Royal Society of Chemistry (2015) https://doi.org/10.1039/9781849737494-00100
  31. “Heterogeneous Catalysts for Biodiesel Production”, Radu, Daniela R., George A. Kraus, Heterogeneous Catalysts for Today’s Challenges, Royal Society of Chemistry (2015) https://doi.org/10.1039/9781849737494-00117
  32. Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe2SiS4 and Fe2GeS4 Photovoltaics” Orefuwa, S. A.; Lai, C.-Y.; Dobson, K.; Ni, C.; Radu, D. MRS Online Proceedings Library 2014, 1670, M3 – 10.1557/opl.2014.507. https://doi.org/10.1557/opl.2014.507
  33. “High-Efficiency Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles” Cao, Y.; Denny, M. S.; Caspar, J. V.; Farneth, W. E.; Guo, Q.; Ionkin, A. S.; Johnson, L. K.; Lu, M.; Malajovich, I.; Radu, D.; Rosenfeld, H. D.; Choudhury, K. R.; Wu, W. (authors listed alphabetically) Journal of the American Chemical Society 2012, 134 (38), 15644-15647. http://pubs.acs.org/doi/full/10.1021/ja3057985
  34. “Reversible binding and fluorescence energy transfer between surface-derivatized CdS nanoparticles and multi-functionalized fluorescent mesoporous silica nanospheres” Lai, C.-Y.; Wu, C.-W.; Radu, D. R.; Trewyn, B. G.; Lin, V. S.-Y. Studies in surface science and catalysis 2007, 170, 1827-1835 https://doi.org/10.1016/S0167-2991(07)81066-4
  35. “Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method” Radu, D. R.;Lai C-Y; Huang J.; Shu X.; Lin, V. S.-Y. Chemical Communications 2005, (10) 1264-1266. http://dx.doi.org/10.1039/B412618A
  36. “Real-Time Imaging of Tunable Adenosine 5-Triphosphate Release from an MCM-41-Type Mesoporous Silica Nanosphere-Based Delivery System” Gruenhagen, J. A.; Lai, C.-Y.; Radu, D. R.; Lin, V. S. Y.; Yeung, E. S. Spectrosc. 2005, 59 (4), 424-431. http://as.osa.org/abstract.cfm?URI=as-59-4-424
  37. “A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent” Radu, D. R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. Journal of the American Chemical Society 2004, 126 (41), 13216-13217. http://dx.doi.org/10.1021/ja046275m
  38. “Gatekeeping Layer Effect:  A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters” Radu, D. R.;, Lai C-Y; Wiench J.W.; Pruski M.; Lin, V. S.-Y. Journal of the American Chemical Society 2004, 126(6), 1640-1641. http://dx.doi.org/10.1021/ja038222v
  39. “Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acids” Mbaraka, I. K.; Radu, D. R.; Lin, V. S. Y.; Shanks, B. H., Journal of Catalysis 2003, 219 (2), 329-336. https://doi.org/10.1016/S0021-9517(03)00193-3
  40. “Oxidative Polymerization of 1,4-Diethynylbenzene into Highly Conjugated Poly(phenylene butadiynylene) within the Channels of Surface-Functionalized Mesoporous Silica and Alumina Materials”  Lin, V. S.-Y.; Radu, D. R.; Han, M.-K.; Deng, W.; Kuroki, S.; Shanks, B. H.; Pruski, M. Journal of the American Chemical Society 2002, 124 (31), 9040-9041. http://pubs.acs.org/doi/abs/10.1021/ja025925o

 

Patents

 

  1. Daniela Radu, Cheng-Yu Lai, Melissa Venedicto, Faizan Syed, Dakota Aaron Thomas, Samuel Oyon, “Additive-polymer composite materials and methods of fabricating the same” US Patent, 11958956 (2024)
  2. A Hassan, E Alwan, DR Radu, CY Lai,”Dual-band antenna arrays and methods of fabricating the same”,US Patent 11,862,854 (2024)
  3. “Nanoscale precursors for synthesis of Fe(Si,Ge)(S,Se)crystalline particles and layers” Radu, Daniela Rodica, Cheng-Yu Lai, US 9634161 (2017)
  4. “Processes for preparing copper tin sulfide and copper zinc tin sulfide films” Johnson, Lynda Kaye; Lu, Meijun; Catron, John , Jr.; Radu, Daniela Rodica WO 2010135667 (2011)
  5. “Copper tin sulfide and copper zinc tin sulfide ink compositions” Johnson, Lynda Kaye; Catron, John ; Radu, Daniela Rodica US 9112094 (2010)
  6. “Copper zinc tin chalcogenide nanoparticles“ Radu, Daniela Rodica; Caspar, Jonathan V.; Johnson, Lynda Kaye; Rosenfeld, David; Malajovich, Irina; Lu, Meijun WO 2010135622 (2010).
  7. “Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles” Johnson, Lynda Kaye; Radu, Daniela Rodica; Lai, Cheng-Yu; Lu, Meijun; Malajovich, Irina WO 2011066205 (2011)
  8. “Copper zinc tin chalcogenide nanoparticles“ Radu, Daniela Rodica; Caspar, Jonathan V.; Johnson, Lynda Kaye; Rosenfeld, David; Malajovich, Irina; Lu, Meijun WO 2010135622 (2010)
  9. “Use of functionalized mesoporous silicates to esterify fatty acids and transesterify oils” Lin, V. S.-Y. and Radu D. R., US 7122688 (2006).